Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 102(3): 533-539, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673472

RESUMO

Phacidiopycnis washingtonensis and P. pyri cause speck rot and Phacidiopycnis rot on apple and pear, respectively. Infection occurs in the orchard and remains latent, and symptoms appear after months of storage. Decay management relies on orchard sanitation and pre- and postharvest fungicides. In a 2017 survey, speck rot accounted for 6.4% of apple decay in central Washington, whereas Phacidiopycnis rot accounted for 3.9 and 6.7% of total pear decay in Washington and Oregon, respectively. Sensitivities of baseline populations of 110 P. washingtonensis and 76 P. pyri isolates collected between 2003 and 2005 to preharvest fungicides pyraclostrobin (PYRA) and boscalid (BOSC) and to postharvest fungicides thiabendazole (TBZ), fludioxonil (FDL), pyrimethanil (PYRI), and difenoconazole (DFC) were evaluated using a mycelial growth inhibition assay. Mean effective concentrations necessary to inhibit 50% growth (EC50) of P. washingtonensis were 0.1, 0.3, 0.8, 1.8, 2.1, and 4.8 µg/ml for FDL, PYRI, TBZ, DFC, PYRA, and BOSC, respectively. Respective mean EC50 values for P. pyri were 0.2, 0.6, 1.6, 1.1, 0.4, and 1.8 µg/ml. The sensitivity of exposed P. washingtonensis and P. pyri populations collected in 2017 revealed potential shifts toward BOSC and PYRA resistance. The efficacy of the six fungicides to control isolates of each pathogen with different in vitro sensitivity levels was evaluated on apple and pear fruit. FDL, DFC, and PYRI controlled both Phacidiopycnis spp. regardless of their EC50 values after 5 months of storage at 0°C in a regular atmosphere. The consistent occurrence of Phacidiopycnis spp. will require continuous monitoring and development of disease management strategies based on fungicide phenotypes and efficacy of existing fungicides assessed herein.


Assuntos
Ascomicetos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Pyrus/microbiologia , Compostos de Bifenilo/farmacologia , Dioxóis/farmacologia , Frutas/microbiologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Oregon , Doenças das Plantas/prevenção & controle , Pirimidinas/farmacologia , Pirróis/farmacologia , Sensibilidade e Especificidade , Estrobilurinas/farmacologia , Tiabendazol/farmacologia , Washington
2.
Sci Total Environ ; 598: 1-11, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28433817

RESUMO

Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Cyprinidae , Animais , Canadá , Ecossistema , Espécies em Perigo de Extinção , Água Doce , Modelos Teóricos , South Dakota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...